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The Sherpa hypothesis: Phenotype-Preserving Disordered
Proteins stabilize the phenotypes of neurons and
oligodendrocytes
Vic Norris 1✉, Judit Oláh 2, Sergey N. Krylov3, Vladimir N. Uversky 4 and Judit Ovádi2

Intrinsically disordered proteins (IDPs), which can interact with many partner proteins, are central to many physiological functions
and to various pathologies that include neurodegeneration. Here, we introduce the Sherpa hypothesis, according to which a subset
of stable IDPs that we term Phenotype-Preserving Disordered Proteins (PPDP) play a central role in protecting cell phenotypes from
perturbations. To illustrate and test this hypothesis, we computer-simulate some salient features of how cells evolve and
differentiate in the presence of either a single PPDP or two incompatible PPDPs. We relate this virtual experiment to the
pathological interactions between two PPDPs, α-synuclein and Tubulin Polymerization Promoting Protein/p25, in
neurodegenerative disorders. Finally, we discuss the implications of the Sherpa hypothesis for aptamer-based therapies of such
disorders.
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INTRODUCTION
Intrinsically disordered proteins (IDPs) transiently adopt many
different conformations that range from the compact to the
extended forms unhindered by energetic constraints1. IDPs are
common, with the eukaryotic proteome estimated to contain
around ∼20% disordered proteins2,3. Disordered regulatory
domains can constitute switches as their structures can be
changed significantly by post-translational modifications4. IDPs
and proteins that contain intrinsically disordered regions, which
for convenience we class here as IDPs, are implicated in liquid-
liquid phase separation and the formation of intracellular
biomolecular condensates5,6. IDPs are frequently involved in cell
signalling networks because they can bind to many partner
proteins with both high specificity and low affinity (hence
transiently)1,7,8; these disorder-based interactions can take several
forms1,9,10. Some IDPs display a tendency to self-associate and to
form stable aggregates11,12.
IDPs are frequently implicated in various maladies, such as

cancer and neurodegenerative diseases13. For example, mutations
in the disordered protein p53 have been identified in colon, lung,
breast, and brain cancers14. Protein aggregation in the brain is
central to neurodegenerative diseases, with α-synuclein (SYN) and
Tubulin Polymerization Promoting Protein/p25 (TPPP) aggregation
being characteristic of Parkinson’s disease and multiple system
atrophy15–17, and β-amyloid and tau aggregation being character-
istic of Alzheimer’s disease18,19. Aggregation of these unfolded/
misfolded proteins generally leads to the formation of character-
istic proteinaceous deposits in neurodegenerative diseases20.
Despite the well-established importance of many IDPs for

pathogenesis, the normal function of these proteins is not entirely
clear. Indeed, understanding their physiological functions might
allow the development of therapies without side-effects. It has been
argued that one advantage of disorder may be that it makes an
economical use of resources because the interface between an IDP

and a partner protein requires fewer residues from the IDP than a
similar interface between ordered proteins21. It is also believed that
the flexibility of IDPs enables them to perform functions that are
complementary to those of ordered proteins22. The structural
heterogeneity and conformational plasticity of IDPs constitute the
foundation of the structure-function continuum model, in which a
protein exists as a dynamic conformational ensemble containing
multiple proteoforms characterized by a broad spectrum of
structural features and possessing various functional potentials23–25,
with SYN being considered as one of the illustrative examples of this
protein structure-function continuum model26.
Fully understanding the function of a protein may well require

understanding the living system within which this protein
operates. One approach to understanding living systems is to
model them as networks of connections between elements or
nodes. In a pioneering investigation of such networks, Kauffman
highlighted a fundamental problem that confronts cells contain-
ing many interacting constituents, namely, how such cells manage
to obtain the reproducible phenotypes needed for natural
selection to be effective when a ‘hyper-astronomical’ number of
combinations of these constituents is apparently available27. The
solution we favour is to consider the cell as a set of elements or
macromolecules, out of which only a few – rather than a number
limited only by the total number of constituents – are selected to
determine the cell’s behaviour or phenotype at any given
time28,29. This subset of macromolecules, which determines the
phenotype, is selected on the basis that: i) the subset must be
coherent (i.e., the macromolecules in this subset must work
together and not against one another); ii) the behaviour at one
time must be coherent with the behaviour at the previous time
(i.e., any behaviour-determining subset of macromolecules must
continue the work of the previous subset).
Here, we propose a hypothesis for the function of stable IDPs

inspired by Himalayan mountain guides or Sherpas. A Sherpa does
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more than helping to carry the material needed for an expedition;
he can act as an indispensable guide for those climbing a
particular mountain, choosing the route and keeping the climbers
on it despite perturbations. Climbing different mountains requires
different Sherpas. In our hypothesis, one class of the IDPs,
Phenotype-Preserving Disordered Proteins (PPDPs), limits the
phenotypes available to cells so they can differentiate. The PPDP
achieves this restriction of phenotype space by its interactions
with its partner proteins and by its own stability, which allows it to
act as a kind of memory. To illustrate and validate the hypothesis,
we introduce the equivalent of an PPDP into a version of a
learning program, Coco, which simulates how a cell evolves into a
differentiated state via a competition between selection for a state
that is internally coherent (i.e., that the constituents work
together) and selection for a historical coherence (i.e., that the
relationship between successive states is meaningful). We find
that even in this very simple, easy-to-analyse, simulation of cell
evolution, a PPDP-like element can have a selectable function that
protects the phenotype. We also find biological evidence in the
neurodegenerative pathways of SYN and TPPP consistent with the
Sherpa hypothesis and, finally, we mention the implications for
therapy.

RESULTS
The Sherpa hypothesis
We propose that a PPDP can play a central role in the
determination of phenotypes by guiding the cell through
successive patterns or trajectories of gene and protein activity
and by helping maintain these patterns despite perturbations (Fig. 1).
The phenotype-stabilising actions of the PPDPs are achieved
because these ‘chameleon’ proteins undergo a succession of
conformational changes via their binding to different partners (not
necessarily in a particular order) as determined by the intracellular
conditions. In this scenario, the first partner to bind the PPDP
reduces the conformational space available to the PPDP so that
only a subset of the original conformations become available (and
perhaps some new conformations that were not in the original
space), then the second partner binds and reduces that space still
further. This sequence of conformational changes may sometimes
be accompanied by a sequence of post-translational modifications
to the PPDP and its partners that determines the functioning of
the ensemble of these proteins. The result is a phenotype-
determining, multi-partner assembly. The binding of a different
first partner would send the PPDP off into a different region of
conformational space where the PPDP’s function would be
altered. If the cell were subjected to a major perturbation, the
PPDP would help maintain the cell in its differentiated state or
trajectory because it binds, brings together, and can protect (or
inactivate) its partners, which are necessary for the differentiation.
In the Sherpa hypothesis, different PPDPs can be associated with
different, incompatible, differentiated states; the downside of this
is that the introduction of a second PPDP into a cell could result in
a serious perturbation of its phenotype; if this second PPDP were
then removed, the first PPDP would then help restore the
phenotype.

The Coco program: Learning vs. phenotype
To investigate the possible roles of proteins that are stable and
that can interact with many partners in preserving the phenotype,
we model the role of the interactions of a subset of macro-
molecules in determining the phenotype of the cell at any given
time. In this modelling, we use a previously published, machine-
learning program, Coco28,29, that simulates, at a very simple level,
how a cell evolves into a differentiated state (Fig. 2). The idea here
is to show that, during a learning task mimicking natural selection,
conditions can exist that select a PPDP-like element. This program

can have thousands of elements that can mimic macromolecules
such as proteins; each element can be either active or inactive in
determining the behaviour of the system in a time-step; an
element is active if it is a member of the current state of the Active
subset of elements (and inactive if it is not). Although Coco can
learn with a state of the Active subset containing from three to
over a hundred elements (not shown), for convenience, in this
version, the state of the Active subset contains only six elements
selected from a total set of a thousand possible elements.
The composition of a state of the Active subset in terms of

elements changes at each time step. Membership of a state of the
Active subset is made based on connectivity; each element has
two fields, a Now field and a Next field, that contain the addresses
of other elements; the presence of these addresses in an element’s
fields correspond to the connections that this element makes with
other elements. The strength of the Next connections that
Element-X makes to Element-Y is calculated by counting the
number of times the address of Element-Y occurs in the Next field
of Element-X (and similarly for its Now field). The membership of
the Active subset is calculated for each time step by ranking the
strengths of the connections of the Next fields of the elements in
the present Active subset. This entails summing the number of
times the address of a particular element occurs in the Next fields
of all the elements in the present Active subset, then ranking these
sums, then selecting the element with the highest Next rank and
comparing it with the element with the highest Now rank. This
latter element is chosen via the connections in the Now fields of
those elements already selected as members of the new
developing Active subset. Note that the same address can occur
in both the Next and Now fields, but this is kept separate in the
ranking. To put it differently, the score of the element at the top of
the Next ranking is compared with the score of the element at the
top of the Now ranking and the element with the higher score is
then elected for membership of the Active subset. This coherence
competition between the Next and Now rankings results in the
system going through a sequence of states of the Active subset. By
appropriately rewarding and punishing the contents of the states
of the Active subsets (i.e., by changing the addresses in the fields
of the Active elements), the system can learn to respond to its
environment in an evolutionary process that leads to a sequence
of states of Active subsets equivalent to differentiation.

Simulation: A PPDP constrains phenotype space
The acquisition of a subset of phenotypes or phenotype trajectory
by a cell via natural selection during its evolution was simulated
by Coco. This program learns to select its constituent elements
(alias ‘macromolecules’) to be in the subset of elements that
determines the system’s behaviour in successive time-steps; this
selection is based on the connections between elements; these
connections result from reward and punishment strategies that
strengthen or weaken these connections (cf. Methods). Coco was
given the task of learning to respond correctly to the input
sequence of (1, 2, 3, 2, 3) from the environment with an output
sequence of (1000, 999, 999, 1000, 998) to that environment; in
these input-output sequences, Coco has to learn to respond to the
input of Element-1 with an output of Element-1000, this is
followed by an input of Element-2 and a learnt output of Element-
999 etc. In the absence of a PPDP-like element, the active elements
(i.e., those with their addresses in the Active subset) were drawn
from the entire set of 1000 elements (Fig. 3).
However, in the presence of a PPDP-like element (Element-10),

all the active elements were drawn from the elements connected
to the PPDP-like element, that is, the addresses of all these
elements were in the Now and Next fields of Element-10 (fields
that only contain addresses 111 to 170) and no other elements
were active (Fig. 3). This shows how the presence of a stable,
highly connected element in Coco can steer its evolution so its
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states involve only a very limited subset of the elements available.
One implication of this result is that the presence of a stable,
potentially highly connected, PPDP in an evolving cell or protocell
limits the range of regulatory molecules responsible for its
phenotype. A related implication is that a set of different,
incompatible PPDPs with different connections could favour the

selection of different phenotypes (or more exactly phenotype
trajectories) during evolution; this is because this situation would
help avoid confusion due to the same molecules being involved in
incompatible phenotypes. In other words, there appears to be a
good reason why PPDPs should have been selected during
evolution.

a

b

c
+

d

+
Fig. 1 The Sherpa hypothesis. A PPDP plays its physiological role when it interacts with its physiological partners to activate or inactivate
them and to co-locate them via phenotype-determining interactions. a In physiological conditions, the structure of a PPDP changes
progressively (initially a blue rectangle and finally a blue zigzag shape) as its partner proteins (blue rectilinear shapes) are associated with it.
b Top panel, the PPDP maintains the differentiated state of the cell despite a perturbation (black lightning); middle panel, a different PPDP
(thick, dark yellow, curved line) with different partner proteins (dark yellow curved shapes) maintains a different differentiated state despite a
perturbation; bottom panel, in the absence of a PPDP, the differentiated state (circular cell) is lost (square red cell corresponding to the
absence of blue partner proteins and presence of red stars and of an inappropriate, dark yellow, partner). c If two different PPDP bind to one
another, the appropriate partner proteins (blue and dark yellow) no longer bind whilst other, inappropriate, proteins (red) may bind. d In
pathological conditions, the introduction of a second PPDP (dark yellow) causes a loss of the phenotype (red square). Black arrow,
physiological path; red arrow, pathological path; red stars, proteins that should not be present in either of the physiological conditions.
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A PPDP helps preserve a phenotype
Once a PPDP has been selected during the evolution, we propose
that it is maintained because it helps preserve the phenotype (or
trajectory of phenotypes). Such preservation would entail resisting
perturbations that could otherwise result in the loss of the
phenotype. To illustrate this, we first explored the effects of a
major perturbation on Coco once it had learnt the standard
sequence (corresponding to a trajectory of phenotypes). This
perturbation took two forms. Firstly, we reasoned that the number
of factors determining the phenotype is important and that it
varies with the environment; indeed, in the case of an
exponentially growing bacterial population, a change in the
environment results in major changes in the number of factors30.
We therefore simulated this number as the size of the state of the

Active subset, which we doubled by going abruptly from six
elements to twelve. Secondly, in the next time step where there
would otherwise be an input of 1 in the Active subset, we
overwrote this state by creating an entirely new state in which we
force into it the addresses of inactive elements. These elements
could be considered as corresponding to the regulatory factors
appropriate for a different phenotype.
In the absence of a PPDP-like element, the perturbation resulted

in a complete loss of the learnt states (Supplementary Fig. 1a).
Hardly any of the elements that were present in these states were
present after the perturbation; Elements-22 and −122 are
exceptions in occurring both before and after the perturbation.
In contrast, in the presence of the PPDP-like Element-10, the learnt
states are preserved (Supplementary Fig. 1b); for example, all the
elements in one of the Active states shown (153, 114, 1000, 145, 10

Fig. 2 The principle of the program. a The phenotypic state of the cell is represented by the contents of the Active subset, which here
contains only three elements (for simplicity). The composition of the Active subset is determined by a competition between the Now and Next
connectivities. Initially, the Next connectivity (red arrows), which represents the coherence of phenotypic states over time, is used to select the
first element (e.g., macromolecule) for membership of the developing state of the Active subset. Then, the Now connectivity (black arrows),
which represents the coherence of the phenotypic state at a particular time, is also used to select the elements. The composition of the Active
subset after learning (alias evolution by natural selection) is a solution to the problem of satisfying the two types of coherence. b Details of
how consecutive states of the Active subset are calculated. Note that the sizes of the Now and Next fields varies. The Now table of element
addresses and their scores is grey and those of the Next table are pink.
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and 119) can be found after the perturbation (Supplementary
Fig. 1b). This illustrates how an IDP element can protect learning
within the context of Coco. The implication of this result is that, for
a cell experiencing a major perturbation, a PPDP could protect its
phenotype or phenotype trajectory and maintain its differentiated
state.
In the Sherpa hypothesis, we propose that the downside of a

PPDP being important for the maintenance of the phenotype is
that the presence of a second PPDP could be disruptive. Indeed, if
this second PPDP were important for a different phenotype
incompatible with the first phenotype, there could be a total loss
of meaningful phenotypes, which would be characterised by a
maladaptive, incoherent physiology and behaviour. To illustrate
this proposal, we used a version of Coco in which a network of a
second PPDP element and its connected elements were created
from inactive elements; this new, second PPDP network mimicked
the structure of the first PPDP network. Firstly, we allowed Coco to
learn in the presence of the PPDP Element-10. Secondly, we
introduced a second PPDP element, Element-312, along with
some of the elements to which it was connected. From then on,
both PPDP elements are present, and the learnt sequence of
states is lost (Supplementary Fig. 2). The implication of this result is
that if a second PPDP is introduced into a cell in a differentiated
state and if the original PPDP and the second PPDP have
incompatible sets of partner proteins, the cell may indeed lose its
differentiated state.
After the second PPDP element had disrupted the learnt

sequence, the probability of this second PPDP element to be

reselected for inclusion in the Active subset via its Next
connectivity score was removed by setting this score to zero.
This did not necessarily prevent the selection of the second PPDP
element and its network because the Now connectivity scores of
the second PPDP element’s network were not affected. We
therefore also forced the selection of one of the environmental
inputs (Element-1); this was done only once in time step 1500. The
presence of input Element-1 and of the PPDP1 Element-10
together with the absence of the PPDP2 element (Element-640 in
Supplementary Fig. 3) led to the recovery of the Elements-118,
−127, −137 and −144 (blue arrow) and the restoration of the
learnt states, therefore, the removal of the second PPDP can
restore the previous phenotype trajectory.

Model system: TPPP and SYN
TPPP and SYN belong to the IDPs displaying multiple physiological
functions and pathological dysfunctions. SYN is expressed
endogenously in neurons and is involved in neurological
processes such as neurotransmitter release and synaptic plasticity;
nevertheless, its precise role in these processes is still
unknown31,32. TPPP is a key player in the differentiation of the
dividing progenitor oligodendrocytes (OLGs) by stabilizing the
microtubule network, which provides differentiated cells for
the myelination in the central nervous system33–35. TPPP inhibits
the tubulin deacetylase enzymes histone deacetylase 6 (HDAC6)
and sirtuin-2 (SIRT2)36 and regulates the microtubule network by
its bundling and acetylation-promoting activities. The disordered

Fig. 3 Pattern of learning altered by a stable, highly connected PPDP-like element. Successive states of the Active subset, each containing
six elements, after learning. Each line of six elements corresponds to the state of the phenotype at a particular time; successive lines
correspond to the trajectory of the phenotypes in the order of the line numbers; the inputs from the environment are in blue rectangles
whilst the responses of the system are in red circles. Left panel: Learning without a PPDP-like element results in the selection of addresses of
elements from the entire range of the thousand elements in the program. Right panel: Learning with the PPDP-like Element-10 results in the
selection of addresses of elements exclusively from Elements-111 to 169, which are just those in the range contained in the Now and Next
fields of Element-10. Input elements are in blue squares and outputs in red ovals. The column of red numbers are the states of the Active
subset.
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SYN and TPPP proteins display multifunctional characteristics due
to their multiple interactions (Fig. 4 and Supplementary Fig. 4).
The SYN- and TPPP-centred STRING networks were generated

using protein search by name option of STRING using the
corresponding UniProt IDs (P37840 and O94811 for SYN and
TPPP, respectively) (Fig. 4), whereas the SYN-TPPP network was
generated using the Multiple Proteins search mode (Fig. 5). In all
cases, the confidence of 0.45 was used for the minimum required
interaction score (Excel files with the detailed information are
presented in the Supplementary materials as Supplementary
Tables 1–3). Figure 4 illustrates the interactions of SYN as well as

those of TPPP in both physiological and pathological conditions;
however, most of the data refer to pathological circumstances
such as the association between SYN and TPPP. The TPPP-derived
aggregation of SYN can disrupt the phenotype of the SYN and
TPPP networks in both neurons and OLGs. Although the TPPP-
centred, protein-protein interaction (PPI) network includes SYN,
and although the SYN-centred, PPI network includes TPPP, there
are just 9 common proteins in these two networks:
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glial fibril-
lary acidic protein (GFAP), 78 kDa glucose-regulated protein
(HSPA5), HDAC6, microtubule-associated protein tau (MAPT),
microtubule-associated protein 2 (MAP2), myelin basic protein
(MBP), beta-synuclein (SNCB), and solute carrier family 6
(neurotransmitter transporter, dopamine) member 3 (SLC6A3).
It might be argued that when the PPI networks of two PPDPs

are identical (which is not the case for the SYN and TPPP
networks) the simultaneous presence of the two PPDPs does not
perturb the phenotype whilst when the PPIs are very different
such simultaneous presence does perturb the phenotype. Simula-
tion of the simultaneous presence of two PPDP-like elements with
different networks, such as SYN and TPPP, does indeed result in a
loss of the learnt state (Supplementary Fig. 2). The implication of
this is that since the PPI networks generated for SYN and TPPP
have little overlap, the probability that the introduction of TPPP
and the TPPP network into a neuron will disrupt the phenotype of
the SYN network (and vice versa for an oligodendrocyte) is greater
than the probability that the two networks will reinforce one
another’s phenotypes.
As mentioned above, partner proteins specific to SYN include

lipoprotein-associated, phospholipase A2, vesicle-associated
membrane protein 2 (VAMP2) and synaptosomal-associated
protein 25 (SNAP25) (in the SNARE complex) and the dopamine
transporter37–39, whilst partner proteins specific to TPPP include
LIM kinase 136,40. In the Sherpa hypothesis, these proteins could
be considered as candidates represented by Elements-111 to
−170, the addresses of which are in the fields of the PPDP-
element. Partners common to SYN and TPPP include tubulin/
microtubule, HDAC6/SIRT2, GAPDH and DJ-136,41–44. Since these
proteins may undergo post-translational modifications, it is
conceivable that differences in modification would determine
differences in their roles in the SYN and TPPP networks.
In order to obtain additional information pertaining to the

actual physical interactions of SYN, TPPP, and SYN-TPPP with their

Fig. 4 Interaction networks of SYN and TPPP. Left panel: SYN-centred protein-protein interaction network generated by the online database
resource Search Tool for the Retrieval of Interacting Genes (STRING)73 using confidence of 0.45 for the minimum required interaction score
(Table S1). This network contains 401 nodes connected by 8,400 edges. The average node degree of the network is 41.9, and its average
clustering coefficient (see Methods) is 0.605. Right panel: TPPP-centred protein-protein interaction network generated by STRING73 using
confidence of 0.45 for the minimum required interaction score (Table S2). This network contains 52 nodes connected by 147 edges. The
average node degree of the network is 5.65, and its average clustering coefficient is 0.826. SYN is denoted by SNCA in the STRING.

Fig. 5 Joint SYN-TPPP protein-protein interaction network. Joint
SYN-TPPP-centred protein-protein interaction network generated by
STRING73 using confidence of 0.45 for the minimum required
interaction score (Table S3). This network contains 442 nodes
connected by 8866 edges. The average node degree of the network
is 40.1, and its average clustering coefficient is 0.5796.
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partners (Fig. 6), a network type “physical subnetwork” was
selected from the STRING basic settings in all three networks (SYN-
, TPPP-, and SYN-TPPP-centred). The joint network of these two
PPDPs (SYN and TPPP) show two clusters with clear separation of a
very large SYN-centred cluster from the small TPPP-based cluster
containing just three proteins. It is important to remember that
this analysis does not permit differentiation between the “date”
(where interactions between different partners take place at
different locations and times) and “party” (where most of the
interactions occur simultaneously) type of protein-protein inter-
actions. Analysis of the PPI network shown in Fig. 6 indicated that
in addition to binding to SYN, TPPP also interacts with another
member of the SYN-based physical subnetwork, HDAC6. Further-
more, dynactin subunit 2 (DCTN2) from the TPPP physical
subnetwork interacts with MAPT that also belongs to the SYN-
based physical subnetwork. Note that both HDAC6 and MAPT are
highly connected hubs, interacting with 23 and 31 proteins,
respectively. Finally, according to the Human Protein Atlas45, the
physical subnetwork of SYN in neurons alone contains 78 nodes
(as against 110 in all cells); these nodes include both proteins
expressed in all cells (such as Heat shock protein family A member
1 A (HSPA1A) and GAPDH) and proteins enriched in neurons (such
as SNAP25, Synapsin-1 (SYN1) and VAMP2). Similarly, the physical
network of TPPP in OLGs alone contains 3 nodes (as against 5
nodes in all cells), namely, TPPP, HDAC6 and DCTN2.

DISCUSSION
The basic idea of the Sherpa hypothesis is that the IDPs
corresponding to PPDPs can contribute to the preservation of
the cellular phenotype by counteracting perturbations and
influencing evolutionary processes. Potential perturbations
include the presence or absence of proteins and ligands that
interact with the PPDP, along with post-translational modifications
and mutations; these perturbations can affect the properties of
the PPDP, such as its association with itself and its partners, and
hence the preservation of the phenotype. For example, the
presence of SYN perturbs the physiological association of TPPP
with the microtubule network as does N- and C-terminal
truncation of TPPP;46 in the case of SYN, post-translational
modifications and mutations of SYN can affect its aggregation47,48

whilst certain mutations (A53T, A53E, and G51D) can result in an
aggressive pathological phenotype49.
A significant fraction of proteins do not have a well-defined 3D

structure, and these IDPs with their extensive interaction potency
display multiple physiological and pathological functions; they
often serve as hub proteins50. IDPs such as SYN and TPPP
characteristically display a remarkable conformational flexibility
and structural plasticity. These chameleon proteins are considered
to be unstable and are targets of proteolytic degradation, at least,
in their nascent forms. However, they readily develop multiple
interactions with ligands and macromolecules that can prevent
their proteolytic degradation51. Their associations with their
partner proteins, which may have special functions, are pre-
dominantly determined by the intracellular milieu (which itself
depends on the cell type).
Molecular chaperones can buffer the destabilizing mutations in

individual proteins by providing robustness during proteome
evolution. According to Pechmann and Frydman52, the IDPs,
including the hub proteins (which interact with multiple partners
in networks), exhibit more non-conservative substitutions at the
expense of enhanced chaperone assistance, thereby highlighting
an intricate interplay of molecular chaperones and protein
disorder in the course of the network evolution. Mutations were
ranked according to their predicted effect on protein stability, and
those that were highly destabilizing in more than 20% of their
occurrences were considered non-conservative. This interplay
balances the possible cost of mutations on protein folding/
stability and the benefit of new interactions/functions52. In fact,
there are molecular chaperones that specialize in folding
unfolded/misfolded proteins in order to counteract destabilization
and so prevent the disruption of multiple cellular processes. While
unique biological functions of proteins often require unique 3D-
structures, the IDPs and proteins that contain both IDRs and
ordered regions are also functional, being able to engage in
biological activities and perform seemingly impossible tasks such
as the phenotype stabilization proposed in the Sherpa hypothesis.
The idea that one function of the IDPs, or at least of the PPDPs,

is to preserve the phenotype via their stabilizing properties is the
key element of the Sherpa hypothesis as illustrated in Fig. 1. The
importance of the unfolded/misfolded proteins with non-
conservative mutations in the evolution of protein networks has
been demonstrated at the proteome level52. Therefore, the
opportunity for the preservation of the phenotype of the cells
by PPDPs is reasonable, especially if they are associated with
partners at the very moment of their expression. The ongoing
complexation of these proteins by the PPDPs is modelled in the
Coco program by the many interactions possible for the PPDP
elements and by the continued presence of the PPDPs (via the
assumption of a zero Downtime i.e., complete stability) for the
PPDP elements themselves. The results show that, in this sort of
learning program, the associations of PPDPs with their specific
partners could constrain the space of new phenotypes explored
during evolution. It should be noted that the Sherpa hypothesis

Fig. 6 STRING-generated physical subnetworks (the edges indi-
cate that the proteins are part of a physical complex) for SYN,
TPPP and SYN-TPPP. Statistical parameters for these three physical
subnetworks: SYN: 110 nodes, 522 edges, average node degree 9.49,
average local clustering coefficient 0.707; TPPP: 5 nodes, 5 edges,
average node degree 1.6, average local clustering coefficient 0.8;
SYN-TPPP: 113 nodes, 548 edges, average node degree 9.7, average
local clustering coefficient 0.689. In the physical subnetwork for
SYN-TPPP, nodes are coloured based on the clustering using the
Markov Cluster Algorithm (MCL) option of STRING73. The network
was clustered to the MCL inflation parameter of 2. “Red” cluster
includes 110 nodes that correspond to the proteins physically
interacting with SYN, whereas three members of the “green” cluster
corresponds to the members of the TPPP physical complex.
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and its simulation by Coco are not at the level of molecular
mechanisms where compartmentalisation, phase separation,
mutations, specific concentrations, post-translational modifica-
tions etc. should be taken into account individually.
Different basins of the energy landscapes correspond to

different phenotypes such as neurons and OLGs or their
progenitor and differentiated forms, which depend on the
presence of TPPP and/or SYN33,53–55. The “depth” and number of
the basins determine the outcome of perturbations. If the local
minimum is too deep, the phenotype is stable and no
transformation occurs into other phenotypes in the course of
the evolution; however, at a modest local minimum, the stability
can be reduced. The local minima characteristic of neurons and
differentiated OLGs may, of course, differ. One can argue that the
depth of basins for these phenotypes is strongly determined by
the expression of – or the transformation by – the two PPDP
proteins, that is, by their intracellular concentrations. In particular,
it is reasonable to suppose that the initial concentration of a PPDP
is an important factor in these basins (i.e., in the differentiation of
a cell and in the maintenance of its differentiated state). In
physiological conditions, where the total concentrations of SYN
and TPPP in the brain and cerebrospinal fluid are similar56,57, the
TPPP in neurons and the SYN in OLGs are below the detection
level whilst, in pathological conditions, SYN and TPPP are co-
enriched and co-colocalized in both neurons and OLGs. In other
words, the differentiated state is stable if the second PPDP is
undetectable.
A model system has been established with SYN and TPPP, which

are expressed endogenously in neurons and OLGs, respectively, in
normal human brain (Fig. 7)33,53–55. The Coco program simulates
certain related experimental results, namely, the promotion of
phenotype alterations due to the hetero-association of the
disordered TPPP with another disordered protein, SYN, which occur
because of the transmission of SYN into OLGs or of TPPP into
neuronal cells17,58–62. In addition, the pathological overexpression of
SYN could be considered as acting as a second PPDP resulting in

SYN assembly with phenotypic alteration as illustrated by the Coco
program. Within the aggregates that ultimately result from SYN/
TPPP interactions, the partner proteins lose their functions63, a
situation that corresponds to the perturbations predicted by the
Sherpa hypothesis and to the results of our simulation. These
perturbations lead to neurodegenerative disorders or other
diseases17,47,64–67.
In the case of these PPDPs, the therapeutic approaches opened

up by the Sherpa hypothesis include those that limit perturba-
tions, which would help maintain the functioning of the PPDP and
its partners. Another approach is the construction/selection of
novel, highly specific, synthetic or designed PPDP helpers (that
could be activators or inhibitors) out of a set of oligonucleotide or
peptide aptamers; each individual aptamer would target the PPDP
or, possibly, the partners of the PPDP. Such aptamers could be
linked to one another to form a single construct for the
modulation of both the homologous and the heterologous
associations of PPDPs within the cells. These constructs would
activate or inactivate the physiological and pathological proteins
as appropriate, which might well suffice to avoid the pathological
consequences of the association of SYN-SYN and SYN-TPPP;
consequently, such synthetic PPDP helpers could act potentially as
therapeutic agents. Encouragingly, recent studies have revealed
that both oligonucleotide- and peptide-based aptamers, modula-
tors of protein-protein interactions, can effectively counteract the
pathological aggregations of these PPDPs46,68–72.
Finally, the associations of a PPDP with its partner proteins may

help other types of differentiated cells resist perturbations. In the
case of TPPP, its stabilization of the microtubule network is central
to differentiation; this stabilization is disrupted by the pathological
presence of SYN. The hypothesis may therefore even prove helpful
in understanding and treating diseases like Parkinson’s disease
and multiple system atrophy in which the interactions between
SYN and TPPP are implicated15–17,36,62.

Fig. 7 A phenotypic alteration caused by IDPs leads to Parkinsonism. a TPPP-derived differentiated OLG proceeds to aggregation by SYN
leading to the formation of intracellular inclusion found in multiple system atrophy33,74. b TPPP and/or SYN-induced aggregation of SYN in
neuron; SYN-TPPP assembly-promoted Lewy body characteristic of Parkinson’s disease75. Atomic-resolution structure of alpha-synuclein fibrils
(PDB ID: 2N0A)76.
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METHODS
Coco program
In this version of Coco, a thousand elements are connected initially
with one another in a pattern that has some structure. In essence,
connections were made at random between the 36 elements in a
group of elements (e.g., between elements with addresses 50 to
86) for each of nine groups (with addresses 150 to 186, 250 to 286,
350 to 386 etc.). Three of the thousand elements are chosen to be
input elements (with addresses 1, 2 and 3), and three are chosen
to be output elements (998, 999 and 1000). Coco learns to respond
to repeated cycles of an input sequence of (1, 2, 3, 2, 3) with an
output sequence of (1000, 999, 999, 1000, 998). Most elements
have a Now and a Next field that can vary in size from containing
the address of just one element to containing the addresses of up
to 8 different elements per field (N.B., the address of a single
element can occur many times in a field). The size of an element’s
fields increases if this element is part of a successful response (i.e.,
is part of the state of an Active subset that is rewarded) and
decreases if it is part of an unsuccessful one (i.e., is part of a state
that is punished). The contents of these fields also change with
learning, such that the number of times an element’s address is
present in the fields of another element increases if the elements
are both part of a rewarded state or sequence of states of the
Active subset and, reciprocally, decreases in the case of punish-
ment. In the rewarding and punishing process, an input (which
corresponds to an address of elements-1 or −2 or −3) being
inserted into a state of the Active subset) must be followed by an
output (corresponding to 998, 999 or 1000) appearing in the same
of in one of the following two states of the Active subset. If an
output does not appear, Coco forces a randomly chosen address
of an output into the last of the three states of the Active subset,
thereby allowing an appropriate rewarding or punishing. Down-
time is an important characteristic of the elements in Coco. It
corresponds to the time needed for the resynthesis of a regulatory
molecule following the degradation of this molecule when its
function is no longer needed. Once an element has been part of a
state of the Active subset, it cannot be part of a new state until
there have been 12 more states of the Active subset.
To model a stable, highly connected PPDP like SYN and TPPP in

Coco, we choose the element with address 10 to represent the
PPDP; in other words, 10 identifies the element. We give Element-
10 a Downtime of zero and a high strength via its Next
connections so that it can be present in consecutive states of
the Active subset (corresponding to a stable protein). We also give
Element-10 large Now and Next fields of fixed sizes that can each
contain 60 addresses (corresponding to the many proteins with
which an IDP might interact). These addresses run from 111 to 140
in Element-10’s Now field and from 141 to 170 in its Next field;
each of these addresses occurs twice. It is important to note that
the addresses in Element-10’s fields are fixed at the start of the
program and cannot be changed – in other words, they are
exempt from the rewarding and punishing routines.
To model the effects of a perturbation, we first let Coco learn

and, when this learning is stable, disable the rewarding and
punishing routines along with those responsible for forced inputs
from the environment (1, 2 and 3) and for forced outputs. Coco
then continues with an unchanging cycle of states of the Active
subset, which we take to represent a cell that has undergone
natural selection then remaining in a differentiated state or
phenotype (more accurately, a cycle of phenotypes) despite the
absence of selective pressure. At this stage, we subject Coco to a
major perturbation. Firstly, in the time step 999, we double the
size of the Active subset so that from then on a state of the Active
subset contains 12 addresses. Secondly, in the next time step
where there would otherwise be an input of 1, we create a new
state of the Active subset; the addresses in this new state are those

of elements that do not belong to those that are in the learnt
sequence (i.e., they are inactive elements).
To model the effects of the introduction of a second IDP, we use

a slightly different version of Coco. After the program has learnt,
we create a second IDP using the inactive elements. The pattern of
connections between the elements that are active in one of the
last twenty-four states of the Active subset is recorded (which
more than covers an entire learnt sequence of states). This pattern
is then mimicked using only those elements that never have
addresses in the Active subset (they therefore have Downtimes of
zero); one of these elements has a similar pattern of connections
to the first IDP (Element-10) and is designated as the second IDP.
This IDP is given the same properties as the first IDP with a
Downtime of zero and a Next connectivity score that ensures it is
always in a state of the Active subset. The second IDP is introduced
into a state of the Active subset along with some of the elements
to which this second IDP is connected. Coco then continues as
before.
Finally, we use the modified version of Coco to investigate

whether the removal of the second IDP by putting its Next
connectivity score to zero can lead to the restoration of the
original, learnt sequence of the states of the Active subset.
Availability of computer code and algorithm: The code used to

generate some of the results and an overview of the programs are
given in Supplementary Information.

Analysis of interactability of SYN and TPPP
Interactability of human SYN (UniProt ID: P37840) and TPPP
(UniProt ID: O94811) was analysed by the online database
resource Search Tool for the Retrieval of Interacting Genes
(STRING)73. STRING generates a network of predicted associations
based on predicted and experimentally-validated information on
the interaction partners of a protein of interest73. In the
corresponding network, the nodes correspond to proteins,
whereas the edges show predicted or known functional associa-
tions. Seven types of evidence are used to build the correspond-
ing network, and are indicated by the differently coloured lines: a
green line represents neighbourhood evidence; a red line – the
presence of fusion evidence; a purple line – experimental
evidence; a blue line – co-occurrence evidence; a light blue line
– database evidence; a yellow line – text mining evidence; and a
black line – co-expression evidence73.
In this study, STRING was used in two different modes: to

create PPI networks centred on human SYN or TPPP and to
produce a joint SYN-TPPP PPI network. Individual protein-
centred PPI networks and a joint SYN-TPPP-centred network
were generated by STRING (https://string-db.org/) using a
custom value of 500 first-shell interactions and custom
confidence level of 0.45. The resulting PPI networks were further
analysed using STRING-embedded routines in order to retrieve
the network-related statistics, such as: the number of nodes
(proteins); the number of edges (interactions); average node
degree (average number of interactions per protein); average
local clustering coefficient (which defines how close the
neighbours are to being a complete clique – if a local clustering
coefficient is equal to 1, then every neighbour connected to a
given node Ni is also connected to every other node within the
neighbourhood, and if it is equal to 0, then no node that is
connected to a given node Ni connects to any other node that is
connected to Ni); expected number of edges (which is a number
of interactions among the proteins in a random set of proteins
of similar size); and a PPI enrichment p-value (which is a
reflection of the fact that query proteins in the analysed PPI
network have more interactions among themselves than what
would be expected for a random set of proteins of similar size,
drawn from the genome. It was pointed out that such an
enrichment indicates that the proteins are at least partially
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biologically connected, as a group). We also looked for the
actual physical interactions of SYN, TPPP, and SYN-TPPP with
their partners. To this end, a network type “physical subnetwork”
was selected from the STRING basic settings in all three
networks (SYN-, TPPP-, and SYN-TPPP-centred). Furthermore,
we clustered the physical SYN-TPPP subnetwork using the
Markov Cluster Algorithm (MCL) option of STRING, with the
network being clustered to the MCL inflation parameter of 2.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All data generated or analysed during this study are included in this published article
(and its Supplementary Information files).
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